PURDUE UNIVERSITY

Yixian Niu (Agricultural Engineering), Wes Willson (ASM)

Background

The ASABE hosts the International ¹/₄ Scale Tractor Student Design Competition each year where 27 universities build a tractor and compete in a unique 360-degree workplace experience. Teams are only given an engine and rear tires and the rest must be designed following strict rules. **Project Goals**

The team's goals for this tractor design are:

- Design a new drivetrain system to eliminate CVT (Continuously Variable Transmission) due to rules changes
- Improve the data acquisition system to get real time feedback
- Design a new exhaust system for lower noise
- Improve Frame and Suspension

Design Constraints

Each team of engineers were constrained by the rules of the ASABE ¹/₄ Scale **Tractor Student Design Competition.** The design constraints were:

- Weight Tractor may not exceed 900 lbs. maximum gross vehicle weight
- **Length** No part of the tractor may protrude further forward than 96 inches from the center of the rear axle

Width – No part of the tractor may be wider than 72 inches There are several other limitations and rules that the team must meet to qualify for the competition, regarding component design, safety, noise, etc.

Economic Analysis

- Cost breakdown uses ASABE competition pricing constants
- All purchased parts are multiplied by 40% and Fabricated parts by 70%

Summary		
Manufacturing Variable Cost	\$ 9,710.43	\$25.40 \$25.35 \$199.98 \$68.10
Period Manufacturing Cost (14%)	\$ 1,359.46	\$1,433
Research & Development (6%)	\$ 582.63	\$1,433
Estimated Full Production Units	3000	
Adjusted Manufacturing Cost	\$ 11,652.51	\$130.36
Suggested List Price	\$ 12,400.00	\$700.00
Profit Margin	6%	\$569.15
Yearly Net Profit	\$ 2,242,459	
Total Number of Parts	174	\$288.44 \$2,406.18
Tractor Weight	850 lbs	

Impact and Sustainability

- New design employs electric drivetrain system -- clean energy, easier to control and more power provided.
- Regardless of the rules, a quick-charge system should be added, then a smaller engine and generator could be used.
- Adding batteries could also make the system emissions free, which is preferred for indoor work like greenhouse.

Technical Advisors: David Willson

Instructors: Dr. John Lumkes

Acknowledgements:

Special thanks to Scott Brand, the ABE department, Eric Kong, Ben Curtin, James Marschand, Zhongzhong Niu, Yikai Li, Jihang Liu, Wentao Chen

CAPSTONE DESIGN EXPERIENCE 2018 Quarter Scale Tractor Agricultural Biological

Engine System

Drive Train

Steering

Frame

Body

Brake System

Fasteners

Trim

Electrical System

Safety Equipment

Miscellaneous

Final Assembly

Tires & Wheels

Improve operator comfort through the implementation of a flexible front axle suspension system.

Constru Latera

Manufacturability

Efficient fabrication and assembly practices ensure the customer will have the lowest possible cost for the highest quality product available.

Manufacturing Timeline: Selecting—Testing—Subassembly--Final Assembly--Entire Tractor Testing.

References: (n.d.). Retrieved April 14, 2018, from http://fsip.biz/Curtis1313Handset.html https://www.dearkoo.com/agricultural-exhaust-systems-supplier/

Suspension

raints	Leaf Spring	Coils over Shocks	Pneumatic four-link
Compressable	N	N	Y
al Stability	N	N	Y
pring travel	Y	Y	Y
Implemented	N	N	Y

Drivetrain

- Why Electronic:
- Competitive Efficiency
- More precise control
- Lower Noise
- Alternative Designs:
- Closed Loop Hydraulic System
- Electric System
- Four Motor System(Design 1)
- Three Motor System(Design 2)
- Two Motor System(Design 3)

Constraints Must be able to test by March 15th						Hydraulic	Design	Electron 1 Design 2	
						Y	Y	Y	Y
Operate in forward and reverse Must give variable wheel speed control Total drivetrain weight under 540 lbs					Y		Y	Y	
				rol	Y N		Y Y	Y	
								Y	
Criteria	%	Desigr Rank	n2 Score	Design3 Rank Score		Low R/ 1-3	ink	Medium Rank 4-6	High Rank 7-9
		Design	Electronic Design2 Design3		ign3	Low R	ink	Medium Rank	High Rank
Manufacturability			80				of parts	Medium # of parts	Small # of parts
Serviceability	10		60						b Easy to disassemble
Weight Limitation	15	8	120	6	9	0 Over 4	00 lbs	350-400lbs	300-350 lbs
Efficiency	10	5	50	5	5	0 < <u>60%</u>		60-79%	79-90%
Cost	5	1	5	4	2	0 More 1	han 10000\$	8000-10000\$	Less than 8000\$
Torque	10	5	50	7	7	'0 Less th	an 2500 ft lbs	2500-3000 ft lbs	over 3000 ft lbs
Speed	10	8	80	9	9	0 Less th	ian 6 mph	6mph - 8mph	Over 8 mph
Control difficulity	20	3	60	5	10	0 Difficu	lt	Medium	Easy
control unitedity			505		67				

Data Acquisition & Electronics Interface

- 2 motor controllers + 1 PC OEM level programmer + 1 Handled OEM level programmer
- **Programmer can change:**
- slew rate, max power, creep, brake regen, contactor output and many more.
- Handled programmer also acts as **Display**:

Exhaust System

- Goal:
- horsepower at an acceptable level.
- Improvements:
- **Two Muffler in series**

PURDUE AGRICULTURE PURDUE UNIVERSITY

Final Design and Qualification Analysis: - Electric, Two Motor System has been chosen based on decision matrix. **Decision Matrix 1:**

- Design constraints are based on previous years' tractors and competition pull data. Hydraulic and Electronic Design 1 are ruled out
- **Decision Matrix 2:**
- Criteria is based on competition rules
- Electric Design 3 has a better overall
- performance

- Adjust and save parameter settings, monitor real-time data, and perform diagnostics and troubleshooting even during driving

Exhaust Pipe

SealClamp

Flex Hose

take/Exhaust Manifold

http://fsip.biz/Curtis1313Handset.html

Minimize system noise levels while keeping overall

One-side exhaust to have a broader view <u>Alternative designs:</u> only one OEM muffler

https://www.dearkoo.com/agricultural-exhaust-systems-supplier/

